RAS Energy, Mechanics & ControlТеплофизика высоких температур High Temperature

  • ISSN (Print) 0040-3644
  • ISSN (Online) 3034-610X

Совместное воздействие ударно-волнового нагрева и лазерного фотолиза для генерации активных атомов и радикалов в широком диапазоне температур

PII
10.31857/S0040364424050174-1
DOI
10.31857/S0040364424050174
Publication type
Status
Published
Authors
Volume/ Edition
Volume 62 / Issue number 5
Pages
796-800
Abstract
Теплофизика высоких температур, Совместное воздействие ударно-волнового нагрева и лазерного фотолиза для генерации активных атомов и радикалов в широком диапазоне температур
Keywords
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
8

References

  1. 1. Гейдон А., Герл И. Ударная труба в химической физике высоких температур. М.: Мир, 1966. С. 428.
  2. 2. Ступоченко Е.В., Лосев С.А., Осипов А.И. Релаксационные процессы в ударных волнах. М.: Физматгиз, 1965. C. 484.
  3. 3. Hanson R.K., Davidson D.F. Advances in Shock Tube Techniques for Fundamental Studies of Combustion Kinetics // 25th ICDERS. Leeds, UK. August 2–7, 2015. 5 p.
  4. 4. Chao X., Shen G., Sun K., Wang Z., Meng Q., Wang S., Hanson R.K. Cavity-enhanced Absorption Spectroscopy for Shock Tubes: Design and Optimization // Proc. Com. Ins. 2019. V. 37(2). P. 1345.
  5. 5. Balan G.S., Raj S.A. A Review on Shock Tubes with Multitudinous Applications // Int. J. Impact Eng. 2023. V. 172. 104406.
  6. 6. Pavlov V., Gerasimov G., Levashov V., Kozlov P., Zabelinsky I., Bykova N. Shock Tube Study of Ignition Delay Times for Hydrogen–Oxygen Mixtures // Fire. 2023. V. 6. P. 435.
  7. 7. Zhao Z., Wang Y., Zhang J., Liang J., Zhang Y., Zhao F., De Wang Q. A Shock-tube Experimental and Kinetic Simulation Study on the Autoignition of Methane at Ultra-lean and Lean Conditions // Heliyon. 2024. V. 10. e34204.
  8. 8. Cano Ardila F.E., Nagaraju S., Tranter R.S., Garcia G.A., Desclaux A., Ccacya A.R., Chaumeix N., Comandini A. External Standard Calibration Method for High-repetition-rate Shock Tube Kinetic Studies with Synchrotron-based Time-of-flight Mass Spectrometry // R. Soc. Chem. Analyst. 2024. V. 149(5). P. 1586.
  9. 9. Figueroa-Labastida M., Zheng L., Ferris A.M., Obrecht N., Callu C., Hanson R.K. Shock-tube Laminar Flame Speed Measurements of Ammonia/Airgon Mixtures at Temperatures up to 771 K // Combust. Flame. 2024. V. 260. 113256.
  10. 10. Campbell M.F., Parise T., Tulgestke A.M., Spearrin R.M., Davidson D.F., Hanson R.K., Strategies for Obtaining Long Constant-pressure Test Times in Shock Tubes // Shock Waves. 2015. № 25. P. 651.
  11. 11. Ernst J., Wagner H.Gg., Zellner R. A Combined Flash Photo lysis/Shock-tube Study of the Hydroxyl Radical with CH 4 and CF 3 H around 1300 K // Ber. Bunsenges Phys. Chem. 1978. V. 82. № 4. P. 409.
  12. 12. Michael J.V., Sutherland J.W., Klemm R.B. The Flash Photolysis-shock Tube Technique Using Atomic Resonance Absorption for Kinetic Studies at High Temperatures // Int. J. Chem. Kin. 1985. V. 17. P. 315.
  13. 13. Davidson D.F., Chang A., Hanson R.K. Laser Photolysis Shock Tube for Combustion Kinetic Studies // 22nd Symp. (Int.) on Combust. Combust. Inst. 1989. P. 1877.
  14. 14. Michael J.V., Lifshitz A. Atomic Resonance Absorption Spectroscop y with Flash or Laser Photolysis in Shock Wave Experiments. In: Handbook of Shock Waves / Eds. Ben-dor G., Igra O., Elperin T. Acad. Press, 2001. V. 3. P. 77.
  15. 15. Koshi M., Yoshimura M., Matsui H. Photodissociation of O 2 and CO 2 from Vibrationally Excited States at High Temperatures // Chem. P hys. Lett. 1991. V. 176. № 6. Р. 519.
  16. 16. Starikovskiy A., Aleksandrov N. Plasma-assisted Ignition and Combustion // Prog. Energy Combust. Sci. 2013. V. 39. P. 61.
  17. 17. Емельянов А.В., Еремин А.В., Яценко П.И. Экспериментальное исследование взаимодействия атомов хлора с ацетиленом за ударными волнами // ТВТ. 2017. Т. 55. № 5. С. 806.
  18. 18. Дракон А.В., Емельянов А.В., Еремин А.В., Яценко П.И. Исследование диссоциации трифторметана в широком диапазоне температур и давлений с использованием метода молекулярно-резонансной абсорбционной спектроскопии // ТВТ. 2017. Т. 55. № 2. С. 247.
  19. 19. Bystrov N.S., Emelianov A.V., Eremin A.V., Yatsenko P.I. New Insight into Dissociation of Molecular Oxygen at Temperatures below 5000 K // Combust. Flame. 2023. V. 258. № 2(12). 113096.
  20. 20. Bystrov N.S., Emelianov A.V., Eremin A.V., Yatsenko P.I. Kinetics and Thermodynamics of Unimolecular Dissociation of n -C 3 H 7 I // Z. Phys. Chem. 2024. V. 238. № 7. P. 1303.
  21. 21. Millikan R.C., White D.R. Systematics of Vibrational Relaxation // J. Chem. Phys. 1963. V. 39. № 12. P. 3209.
  22. 22. Andrienko D.A., Boyd I.D. Vibrational Relaxation and Dissociation of Oxygen in Molecule-Atom Collisions // AIAA Aviation Forum. 22–26 June 2015. Dallas, TX. 45th AIAA Thermophys. Conf. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library