RAS Energy, Mechanics & ControlТеплофизика высоких температур High Temperature

  • ISSN (Print) 0040-3644
  • ISSN (Online) 3034-610X

УЛУЧШЕНИЕ РАЗРЕШЕНИЯ RANS/ILES(i)-МЕТОДОМ ТУРБУЛЕНТНЫХ ВИХРЕВЫХ СТРУКТУР ПРИ ДОЗВУКОВЫХ ЧИСЛАХ МАХА

PII
S3034610XS0040364425010093-1
DOI
10.7868/S3034610X25010093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 1
Pages
57-67
Abstract
Представлена модификация RANS/ILES(i)-метода высокого разрешения, позволяющая регулировать вклад диффузионного члена схемы Роу для аппроксимации конвективных членов уравнений Навье–Стокса с помощью умножения его на некоторую функцию, зависящую от локальных параметров течения. Предложено два варианта функции. В первом случае она зависит только от локального числа Маха в степени большей единицы, во втором – еще и от завихренности в рассматриваемой точке течения. Для оценки эффективности предложенных функций выполнены расчеты распада однородной изотропной турбулентности при разных уровнях турбулентного числа Маха и околозвуковой затопленной турбулентной струи, выходящей из модельного конического сопла. Исследовано влияние коэффициентов, входящих в предложенные функции, на эффективность уменьшения схемной вязкости при различных числах Маха рассматриваемого течения. Выполнено сравнение с данными экспериментов и результатами исходного варианта RANS/ILES(i)-метода.
Keywords
Date of publication
04.01.2026
Year of publication
2026
Number of purchasers
0
Views
14

References

  1. 1. Islam A., Thornber B. A High-order Hybrid Turbulence Model with Implicit Large-eddy Simulation // Comput. Fluids. 2018. V. 167. P. 292.
  2. 2. Любимов Д.А. Разработка и применение эффективного RANS/ILES-метода для расчета сложных турбулентных струй // ТВТ. 2008. Т. 46. № 2. С. 271.
  3. 3. Kuan T.W.I., Szmelter J., Cocetta F. LES and ILES Simulations of Free‑jets // Flow, Turbul. Combust. 2023. V. 110. P. 547.
  4. 4. Markesteijn A.P., Gryazev V., Karabasov S.A., Ayupov R.Sh., Benderskiy L.A., Lyubimov D.A. Flow and Noise Predictions of Coaxial Jets // AIAA J. 2021. V. 58. № 12. P. 5280.
  5. 5. Lyubimov D.A., Potekhina I.V. Investigation of Capabilities Synthetic Jets Application for Active Flow Control in Diffuser Ducts with Flow Separation Using High Resolution RANS/ILES Method // EUCASS. 2013. Paper 80.
  6. 6. Любимов Д.А., Потехина И.В. Применение RANS/ILES-метода для анализа эффективности управления отрывными течениями в диффузорах с помощью синтетических струй // МЖГ. 2015. № 4. С. 144.
  7. 7. Lyubimov D., Fedorenko A. External Flow Velocity and Synthetic Jets Parameters Influence on Cavity Flow Structure and Acoustics Characteristics Using RANS/ILES // Int. J. Aeroacoustics. 2018. V. 17. № 3. P. 259.
  8. 8. Любимов Д.А., Потехина И.В. Исследование нестационарных режимов работы сверхзвукового воздухозаборника RANS/ILES-методом // ТВТ. 2016. Т. 54. № 5. С. 784.
  9. 9. Любимов Д.А., Честных А.О. Исследование RANS/ILES-методом течения в высокоскоростном воздухозаборнике смешанного сжатия на различных режимах работы // ТВТ. 2018. Т. 56. № 5. С. 729.
  10. 10. Perrin R., Lamballais E. Assessment of Implicit LES Modelling for Bypass Transition of a Boundary Layer // Comput. Fluids. 2023. V. 251. 105728.
  11. 11. Жигалкин А.С., Любимов Д.А. Анализ RANS/ILES-методом влияния турбулентности набегающего потока на течение в сверхзвуковом воздухозаборнике. Оценка диссипативных свойств разностной схемы на примере моделирования распада однородной изотропной турбулентности в рамках ILES // ТВТ. 2022. Т. 60. № 1. С. 63.
  12. 12. Li Z., Zhang Y., Chen H. A Low Dissipation Numerical Scheme for Implicit Large Eddy Simulation // Comput. Fluids. 2015. V. 117. P. 233.
  13. 13. Любимов Д.А. Разработка и применение метода высокого разрешения для расчета струйных течений методом моделирования крупных вихрей // ТВТ. 2012. Т. 50. № 3. С. 450.
  14. 14. Bui T.T. A Parallel, Finite-volume Algorithm for Large-eddy Simulation of Turbulent Flows // NASA TM-206570. 1999.
  15. 15. Дерюгин Ю.Н., Емельянова Я.В., Жучков Р.Н., Уткина А.А. Применение схемы с гибридной диссипацией в решении задач вычислительной аэроакустики // ЖВМиМФ. 2018. Т. 58. № 9. С. 1478.
  16. 16. Sun D., Bai J., Yan C. An Effective Low Dissipation Method for Compressible Flows // Aerospace Sci. Technol. 2020. V. 100. 105757.
  17. 17. Roe P.L. Approximate Riemann Solvers, Parameters Vectors, and Difference Schemes // J. Comp. Phys. 1981. V. 43. P. 357.
  18. 18. Suresh A., Huynh H.T. Accurate Monotonicity–Preserving Schemes with Runge-Kutta Time Stepping // J. Comp. Phys. 1997. V. 136. № 1. P. 83.
  19. 19. Spalart P.R., Allmaras S.R. A One-equation Turbulence Model for Aerodynamic Flows // La Recherche Aerospatiale. 1994. № 1. P. 5.
  20. 20. Compte-Bellot G., Corrsin S. Simple Eulerian Time Correlation of Fulland Narrowband Velocity Signals in Grid-generated “Isotropic” Turbulence // J. Fluid Mech. 1971. V. 48. P. 273.
  21. 21. Bridges J., Wernet M. Measurements of the Aeroacoustic Sound Source in Hot Jets // AIAA-2003-3130. 2003.
  22. 22. Bogey C., Marsden O., Bailly C. Influence of Initial Turbulence Level on the Flow and Sound Fields of a Subsonic Jet at a Diameter-based Reynolds Number of 105 // J. Fluid Mech. 2012. V. 701. P. 352.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library