ОЭММПУТеплофизика высоких температур High Temperature

  • ISSN (Print) 0040-3644
  • ISSN (Online) 3034-610X

Численный метод решения обратной задачи неизотермической фильтрации в средах с двойной пористостью

Код статьи
10.31857/S0040364423050162-1
DOI
10.31857/S0040364423050162
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 6
Страницы
957-960
Аннотация
Построена математическая модель неизотермической фильтрации жидкости в среде с двойной пористостью. Исследовано влияние фильтрационных и теплофизических параметров трещиновато-пористого пласта на кривые изменения температуры, давления и их производные в забое вертикальной скважины. На основе предложенной модели разработан вычислительный алгоритм интерпретации результатов термогидродинамических исследований вертикальных скважин. В качестве исходной информации использованы замеры давления и температуры в забое скважины после ее пуска.
Ключевые слова
Дата публикации
01.11.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
  2. 2. Бадертдинова Е.Р., Хайруллин М.Х., Шамсиев М.Н. Термогидродинамические исследования вертикальных нефтяных скважин // ТВТ. 2011. Т. 49. № 5. С. 795.
  3. 3. Хайруллин М.Х., Шамсиев М.Н., Гадельшина В.Р., Морозов П.Е., Абдуллин А.И., Бадертдинова Е.Р. Определение параметров призабойной зоны вертикальной скважины по результатам термогидродинамических исследований // ИФЖ. 2016. Т. 89. № 6. С. 1470.
  4. 4. Duru O., Horne R. Modeling Reservoir Temperature Transients and Reservoir-parameter Estimation Constrained to the Model // SPE Reservoir Eval. Eng. 2010. V. 13. P. 873.
  5. 5. Sui W., Zhu D., Hill A.D., Ehlig-Econodimis C.A. Determining Multilayer Formation Properties from Transient Temperature and Pressure Measurements // SPE-116270. 2008.
  6. 6. Хайруллин М.Х., Шамсиев М.Н., Бадертдинова Е.Р., Абдуллин А.И. Интерпретация результатов термогидродинамических исследований вертикальных скважин, эксплуатирующих многопластовые залежи // ТВТ. 2014. Т. 52. № 5. С. 734.
  7. 7. Wang Z. The Uses of Distributed Temperature Survey (DTS) Data. PhD thesis. Stanford, 2012.
  8. 8. Баренблатт Г.И., Желтов Ю.П., Кочина И.Н. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах // ПММ. 1960. Т. 24. Вып. 5. С. 852.
  9. 9. Афанасьев А.А. Структура температурного фронта при фильтрации в трещиновато-пористой среде // ПММ. 2020. Т. 84. № 1. С. 64.
  10. 10. Cao Wei, Shiqing Cheng, Jiandong She et al. Numerical Study on the Heat Transfer Behavior in Naturally Fractured Reservoirs and Applications for Reservoir Characterization and Geothermal Energy Development // J. Pet. Sci. Eng. 2021. V. 202. 108560.
  11. 11. Vasilyeva M., Babaei M., Chung E.T. et al. Multiscale Modeling of Heat and Mass Transfer in Fractured Media for Enhanced Geothermal Systems Applications // Appl. Math. Modelling. 2019. V. 67. P. 159.
  12. 12. Pruess K., Narasimhan T.N. A Practical Method for Modelling Fluid and Heat Flow in Fractured Porous Media // Soc. Pet. Eng. J. 1985. V. 25. № 1. P. 14.
  13. 13. Warren J.E., Root P.J. The Behavior of Naturally Fractured Reservoirs // Soc. Pet. Eng. J. 1963. V. 3. P. 245.
  14. 14. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М.: Недра, 1993. 413 с.
  15. 15. Эрлагер Р. Гидродинамические исследования скважин. М.–Ижевск: Ин-т комп. иссл., 2014.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека